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Abstract  

It is shown that  a new boundary  condit ion in general relativity can be interpreted as a 
condition on the  rate of  spinning in a model  for the gravitational field of  an isolated body 
embedded in Trau tman ' s  expanding universe of  spinning particles. The new condit ion is 
also shown to be independent  o f  the  usual  O 'Br ien-Synge condit ions in the sense that  
it is n o t  an identi ty following from them.  

The validity o f  the  delta funct ion  technique employed in deriving the above new 
boundary  condition is investigated in a non-relativistic framework.  The technique is 
shown to yield familiar non-relativistic results as well as a new one which involves rate- 
of-strain and pressure-gradient in the  case of an adiabatic flow such as in a compressible 
fluid with an isentropic equation.  

1. Introduction 

The problem of formulating suitable boundary conditions in general 
relativity has received considerable attention over the years. 

By introducing a system of  coordinates x i relative to which the non-null 
boundary surface E, : x ° = 0 is at rest (where x ° could be any x i, i = 1, 2, 3, 4), 
and by defining any discontinuity of the energy-momentum tensor T] on ~2 
as a suitable limit o f  some continuous distribution of  T], O'Brien & Synge 
(1952) derived the following boundary conditions: 

[(~)ij ] (II) ,  = [g/jl (1.1) 

= [ gaa,0l, (~,/3 v~ 0) (1.2) 
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%  LI)o 
[T; ] = [1F]  (1.3) 

(D (D (I) (I) (tD (II) (u) OD 
[gc, i ~  c~ - gc4T~l = [ gc, iT~ - ga¢ T~] (1.3') 

where the symbol [ ] denotes value taken on the boundary 2; : x ° = 0 between 
two adjacent regions (I) and (II). The symbol (N) above any quantity fsigni- 
ties the value of f i n  the region (N), where N = I, II. If the energy.momentum 
tensor is symmetric (T/i = Tii), then the conditions (1.1) and (1.3) together 
imply the condition (1.3'). 

In order to make the procedure for obtaining the above conditions mathe- 
matically complete, Synge (1960) later revised their approach by restricting 
the problem to a system of coordinates obtained from the system of 
admissible coordinates by a C 1 or C 2 transformation. However, as observed 
by Nariai, the revised procedure implies that the condition (1.1) must always 
hold without any physical justification. Moreover, it is no longer clear whether 
or not the condition (1.2) must hold. Hence Nariai (1965) reconsidered the 
problem of formulating suitable boundary conditions in general relativity, 
using a different method, namely a delta-function technique. 

By stipulating that Einstein's field equations constructed from the com- 
bined metric tensor go (defined by means of a step-function as a linear com- 
bination of two metric tensors specifying two adjacent regions) should be 
delta-singularities free, Nariai (1965) obtained the O'Brien-Synge (1952) 
boundary conditions (1.1) and (1.2). Furthermore, by invoking the consis- 
tency of Einstein's equations with the conservation law T];j = 0, he obtained 
the condition ( 1.3) as well as the following new one for the energy-momentum 
tensor: 

[/-/L'i] = t¢ [Qj] ( 1 . 4 )  

whe re 

and 

Hij = Eij - ½gijE (1.5) 

eij-- g W.# (1.6) 

where Eli # is an expression whose value on the boundary 2; : x ° = 0 is given by 

[Eujr ] = _(¼) [gmn] [A(tr)mA(ij)n - A(o3mA(ir)n] (1.7) 

where 
(I) (II) 

A ( i j ) l  -- P ( i j ) l  - -  I ' ( i j ) l  (1 .8)  

and 

I~(ij)l = gtr I'q (1.9) 

where Pjl is the usual affine connection and t¢ is the coupling constant. 
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The term Qi in (1.4) is an expression whose value on the boundary is given 
by 

[Qj] = _ (~)[gmn] [A(tm)nSit _ A07) n Smt] (1.1 O) 

where 

(i) t (II) t 
Sm ~-- Tm - T m  (1.11) 

The new condition (1.4) reduces to an identity if the condition (1.2) is 
replaced by the more stringent conditions 

0) (n) 
[gij, k] = [gij, k] (1.12) 

i.e. if the metric is of class C 1 (admissible coordinates). However, in the 
general case, owing to the rather complicated mathematical structure of the 
new condition (as can be seen in equations (A. t)-(A.4) of the Appendix), it 
has not been possible to prove directly that (1.4) is not merely an identity. 
On the other hand, physical problems in general relativity (such as 'collapse') 
have hitherto been based solely on some or all of the O'Brien-Synge conditions 
(1.1)--(1.3). Hence there is the need to investigate the status of the new condi- 
tion (1.4) explicitly in various models in order to see its physical implications, 
if any. 

In a previous paper (Kofinti, 1972) we have shown that both the Schwarz- 
schild problem of determining the interior and exterior fields of a homogeneous 
statical sphere of perfect fluid, as well as Bonnor's (1954) approach to the 
stability of cosmological models, are consistent with the new boundary condi- 
tion (1.4) without implying any new physical restrictions. As remarked by 
Bonnor, previous authors who studied the problem of stability reached 
conflicting conclusions partly as a result of using different initial conditions. 

In another paper (Kofiniti, 1973), we considered a model consisting of a 
flat and a conformally flat manifold and showed that the condition may 
indeed be new and is not just an identity. However, it remains to find a 
physical situation in which the O'Bfien-Synge conditions are valid but Nariai's 
new condition is not, or vice versa. 

Now, the new condition (1.4) was derived solely on the basis of the usual 
Einstein field equations. Hence it is necessary to derive the appropriate form 
in the Einstein-Cartan theory. Although we cannot expect the new condition 
to be valid a priori in the Einstein-Cartan framework, the latter might serve 
as a discriminating ground between the new condition and the usual ones. 
Accordingly, in this paper, we investigate the new condition by means of the 
model we discussed recently (Kofinti, 1974) for the gravitational field of an 
isolated body embedded in Trautman-Kopczyfiski (1972) type of an expanding 
universe of spinning dust. We also investigate the validity and implications of 
the delta-function technique (employed in deriving the new condition) by 
applying it to the non-relativistic potential theory of a continuous distribu- 
tion of gravitating matter. 

Section 2 deals with the physical implications of the new boundary condi- 
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tion for our model. Section 3 contains an application of  the delta-function 
technique to ordinary Newtonian potential theory, and Section 4 conclusions. 

2. Implications o f  the N e w  Boundary Condition 

In a previous paper (Kofinti, 1974), we had, for the empty region (I) near 
an isolated body of  mass m embedded in an expanding universe with spin, the 
metric 

d s  2 = eV(r,O d t  2 . -  eX(r, t) d r  2 - { K ( t ) } - Z / 3 r  2 d~2 z, 

(d~22 - d O  2 + sin20 d~ 2) (2.1) 

where, for r "~ d, d 2 = min ( l / i nK t/3 _ 1, t / 2 m K  I/3), 

eV(r, t) = 1 - m K  I/3{(2/r) - r  z + 3} (2.2) 

eX(r,O = K-1/3{1 + (2mKl/3 /r )  _ (2mrZ/K 1/3)} (2.3) 

and K ( t )  is the density of  spin which is related to the cosmological radius 
~ ( t )  by 

IK(t)  l~3(t) = 1 (2.4) 

The metric for the expanding universe of  spinning dust (region (II)) 
surrounding the above region (I) is taken as 

ds 2 = d t  2 - ~K(t) ) -2/3(dr  2 + r z d£22) (2.5) 

where -~KK - / ~ z  + K 4 = 0 (2.6) 

which is a particular case of  that in the Appendix of Trautman (1972). The 
spherical boundary surface Z separating the adjacent regions (I) and (II) defined 
above is given by 

: x ° - r  - 1 = 0 (2.7) 

using the notation of Section 1. 
Using (2.1)-(2.3) and (2.5), we readily find that the conditions (1.1) and 

(1.2) are satisfied on N at the epoch t = to such that K(to)  = 1. Now, since 
the metrics are not of  class C ~, we expect Nariai's new condition (1.4) to be 
non-trivial in our model. Accordingly, we proceed to analyse the implications 
of  the new condition at the epoch t = t 0. 

From (2.1)-(2.3) and (2.5), we find by computation that the only non- 
vanishing components  of  A(ijk ) on the boundary Z : x ° = r - 1 = 0 are 

[Ao 1)o] . . . .  [Aoo)i] = -~(1 + 4m)[/£] 

[A01)1 ] = 3m (2.8) 

using the notation of Section t. We find also that the only non-vanishing 
components of  Eij on the boundary are: 

[Eoo] = - l E a 1 ]  = a-~(  1 + 4m) 21/~2] (2.9) 

and hence [Hi i ]=  0 (2o10) 
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On the other hand, we find that Qj has one non-vanishing component given 
by 

2~ 
[Qo] = - ~-(1 + 4rn) [/(] [K - /~2]  (2.11) 

Hence, from (2.10) and (2.11), the new condition ( 1.4) implies 

[i4 - k  s] = 0 (2.12) 

which, in view of (2.6) with [K] = 1 reduces to 

[/~] [/4 - 31 = 0 (2 .13)  

Now, if [/(] = 0, the condition (1.4) clearly reduces to an identity, in view 
of (2.10) and (2.11). Thus the new condition applies non-trivially only when 

[/~(to)] 4~ 0 and [£(to)] = 3 (2.14) 

Thus the new condition gives rise to a restriction on the rate of spinning of 
the particles lying on the boundary. In view of (2.4) and (2.14), the new con- 
dition is also a boundary restriction on the deceleration of the expanding 
universe of spinning particles, In this case, the first condition in (2.14) is 
merely a statement about the non-vanishing of the Huble parameter at the 
epoch to. 

On the other hand, we find that in our model the condition (1.3) implies 
that 

[2K - 3/( 21 = 0 (2.15) 

which is clearly incompatible with (2'.6) for K(to) = 1. Hence, in our model, 
Nariai's new condition (1.4) is satisfied but the O'Brien-Synge condition (1.3) 
is not. We have therefore shown that the new condition (1.4) is indeed indepen- 
dent of the usual one in (1.3). 

3. Non-Relativistic ConsMerations 

Let x~(a = 1,2, 3) be a system of rectangular Cartesian coordinates rela- 
tive to which the boundary ~2 between two adjacent regions (I) and (II) of a 
continuous distribution of gravitating matter is specified by 

2; :x °=  0 (3.1) 

where x ° is any one of the three coordinates x~(a = 1,2, 3). Let 

(N) (N) 
~0(x c~, t) and p(x ~, t) 

be, respectively, the Newtonian gravitational potential and density corre- 
sponding to the region N( = I, II). 
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Define now the combined gravitational potential ¢ in the domain I + II 
by 

II 

~(x a, t) = ~ (~t xa, t)ON (3.2) 
N=I 

where 

Oi = 0(x°), 
and O(x °) is the step-function given by 

O H = 0 ( - x  °) (3.3) 

i (x° > 0) O(x °) = (x ° = o) 
(x ° < o) 

(3.4) 

The field equation for region (N) is 

(N) (iV) 
¢,aa = -- 4~rG p (3.5) 

where G is the gravitational constant, and that for the combined region 
I + II is 

~o,~ = - 47rGp (3.6) 

where p is the density in the combined region. From (3.2) we obtain 

0) (~))6'(x°) + 0) 0I) . n 
~,oo = ( 9 -  2(¢,o - ¢,o)6(x °) + ~ ¢,ooO~v 

N=I 

II 

~o,c~c~ = ~ tp,.c~ON, (a  4= 0) (3,7) 
N=I 

Hence the necessary and sufficient conditions for ~0aa to be free from any 
kind of  ~ singularities are 

(I) (II) 
[~01 = [ ~ ] (3 .8)  

(I) (II) 
[tP,ol = [ tP,o] (3.9) 

where the symbol [ ] denotes value taken on the boundary N : x ° = 0. The 
conditions (3.8) and (3.9) derived above by the delta-function technique are 
just the usual ones in Newtonian potential theory, namely, that the potential 
and its derivative normal to the boundary E are continuous across the boundary. 
Physically, the condition (3.9) implies that a test particle lying on Z is not 
accelerated in the direction normal to ~. 
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We note also that the field equation (3.6) in the combined region I + II 
implies 

267 

II 
- 4 r r G p = - 4 n G  ~ ~pO N (3.10) 

N = I  

in view of (3.7)-(3.9). Thus, unlike the relativistic case, p is a linear combina- 

tion of  "'~t;)(N = I, II).  Hence, as one would expect,  the non-linear relativistic 
effect arising from the H-term in (1.4) disappears in Newtonian theory. 

Now, in each of the regions (iV), the equation of  continuity holds, i.e., 

(N) (N)(N) 
a p / a t + ( p  ua),c~ = 0 ( N =  I, II) (3.11) 

(N): a +'~ 
where uutx , ,: is the 3-velocity of  fluid in region (N). Let the 3-velocity 
ua(x ~, t) in the combined region I + II be defined by 

II ( N )  a 
us = ~ UeVN (3.12) 

N = I  

Then, from the equation of continuity in the combined region I + II, namely 

an~at + (pu,~),,~ = 0 (3.13) 

and (3.10), we obtain 

II 

N=I 

[ (J'V)/ (N) (N)  2 - . (]D(I) (II) (If) 
(tap/at)ON +( p u~),~ON ) +(PUo-- p Uo)a(x v) 

.(I) (I) (II) (11) ^ : (I) (II) (II) ( I ) .  
+ 2(p  u o O I -  P uoOu)8(x o) +(P us + P u~),aOiOii 

.(I)(II) (II)(1) 
+ (p  Uo + p Uo)(0H - 0i)8 (x °) 
= 0  (3.14) 

which, in view of  (3.11) reduces on the boundary 2; :x  ° = 0 to 

{((~) (I[) (1) (If) (I) (I) (II)(II) x 
- p ) ( u s  - uu)),a - 8 (p  u o - p Uoy[8(x°)] = 0 (3.15) 

Hence the following boundary conditions must be satisfied separately: 

(I) (0 (IO (II) 
[ p u o ]  = [P  Uo] (3.16) 

[ { ( ~ ) _  (II) (I) (II) 
O ) (us  - ua)},~] = 0 (a = 1,2,  3) (3.17) 

in order to avoid 8 singularities. 
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The condition (3.16) is just the usual one which expresses the continuity 
of the normal component of 3-current. Indeed, the conditions (3.8), (3.9) 
and (3.16), are, respectively, the non-relativistic analogues of (1.1)-(1.3). 
However, the condition (3.17) appears to be a new one which is the non- 
relativistic analogue of (1.4). Denoting the discontinuities on the boundary 
of density and 3-velocity by Ap and Aua, respectively, (3.17) takes the form 

[(~x; zXu~),~l = 0 (a = 1, 2, 3) (3.18) 

Introducing the rate-of strain matrix a by 

%# = ½(ua,t3 + u#,~) (3.19) 

we can also write condition (3.17) in the form 

[Ap ,5. Tr a + (Ap),aAua] = 0 (3.20) 

where Tr denotes trace. 
For an incompressible fluid (p = constant), or in the case Au~ = 0, we see 

that (3.20) is a condition on the rate-of-strain of the medium on the boundary 
Z : x ° = 0. On the other hand, if the fluid is compressible and has an isentropic 
equation 

p = kp 7 (3.21) 

where p is the pressure and k, 3' are constant, then (3.20) is a boundary condi- 
tion relating pressure-gradient and the rate-of-strain. 

4. Conclusions 

The above analysis suggests that the new general relativistic boundary 
condition (1.4) may not be a mere identity. In our model, the new condition 
relates to the rate-of-spin of the particles on the boundary at an epoch. This 
in turn implies a non-vanishing Hubble parameter and a boundary condition 
on the deceleration of the universe. The discussion also reveals that the new 
condition is entirely of a different physical nature from the usual ones 
employed in general relativity. 

Whenever possible, it is instructive to examine the implications of general 
relativistic results in the framework of ordinary Newtonian theory. In this 
spirit, our analysis shows first of all that the delta-function technique 
employed in general relativity is physically reasonable at the Newtonain 
level. (Indeed, we have also checked that the technique does yield the usual 
boundary conditions in the non-relativistic Maxwell electromagnetic theory 
(Kofinti, unpublished).) In addition to yielding the usual boundary conditions 
we obtained the new one given by (3.20). The latter, which may be regarded 
as the non-relativistic analogue of (1.4), is a condition on the boundary 
behaviour of rate-of-strain and pressure gradient in the case of a compressible 
fluid with an isentropic equation. The new condition is therefore likely to 
be relevant in thermodynamic considerations in gas dynamics, especially in an 
adiabatic flow. 
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The above non-relativistic considerations also throw some light on why 
the new relativistic condition ( 1.4) holds identically in situations like the 
Schwarzschild problem (Kofinti, 1972) where the boundary surface is 
pressure free. 
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Appendix 
The expression on the left-hand side of the new condition (1.4) is given in 

full by 

(N) (N) . (N) ( 
[Hm';,l = E [P(,c)a{Atmr.s}a. c~ - (½)Sm~AS."n.~.a. ~)}] 

N 

[ N ~ (N) "1[ (N) r ( d c ) _  (N) n (dc) ,  
re . s , ,  n . s . .  J _(1) r(rc).] [ X {At (½)82: 

N 

+ {B .m.s(.d c) t'l,~,~ r p s  n(dc)?. 
-- ~ . z s ' m  ~ .  n.s.. .~ 

(N) (IV) 

N 

(N) d a ~ ]  
(½)ge  E A t  m . , . ,  - B s a , -- . rY/, s. q 

N 

Z (N) ] 
X Alm'n'sab, r - -  Blm'n'sab, r (A.1) 

where (ab) denotes (ab + ba)/2, and 
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and 
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(N) (N) (N) (N) (N) 
Almnsab =- P(ls)a F(mn)b -- F(ln)a P(ms)b 

(O (n) (I0 (O 
Blmn~ab = F(ts)a F(mn)b + F(ls)a F(mn)b 

(1) (II) (II) (I) 
-- F(ln)a P(rn$)b -- P(ln)a P(ms)b 

The right-hand side of  (1.4) is given in full by 

I N  ( N ) ( N ) ( N ) ( N )  g [am] = (¼) ( a n pa R n~ P n a R m  - mn a ) 

(I) (I1) (II) (I) 
a n 

- r ~ , a R m  - r L R m  ~ 

(O (I0 (n) (O ] 
+ Frnn Ra + 

(A.2) 

(A.3) 

(A .4) 
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